Canvas: versatile and scalable detection of copy number variants

نویسندگان

  • Eric Roller
  • Sergii Ivakhno
  • Steve Lee
  • Thomas Royce
  • Stephen Tanner
چکیده

MOTIVATION Versatile and efficient variant calling tools are needed to analyze large scale sequencing datasets. In particular, identification of copy number changes remains a challenging task due to their complexity, susceptibility to sequencing biases, variation in coverage data and dependence on genome-wide sample properties, such as tumor polyploidy or polyclonality in cancer samples. RESULTS We have developed a new tool, Canvas, for identification of copy number changes from diverse sequencing experiments including whole-genome matched tumor-normal and single-sample normal re-sequencing, as well as whole-exome matched and unmatched tumor-normal studies. In addition to variant calling, Canvas infers genome-wide parameters such as cancer ploidy, purity and heterogeneity. It provides fast and easy-to-run workflows that can scale to thousands of samples and can be easily incorporated into variant calling pipelines. AVAILABILITY AND IMPLEMENTATION Canvas is distributed under an open source license and can be downloaded from https://github.com/Illumina/canvas CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canvas SPW: calling de novo copy number variants in pedigrees

Motivation Whole genome sequencing is becoming a diagnostics of choice for the identification of rare inherited and de novo copy number variants in families with various pediatric and late-onset genetic diseases. However, joint variant calling in pedigrees is hampered by the complexity of consensus breakpoint alignment across samples within an arbitrary pedigree structure. Results We have dev...

متن کامل

Application note Canvas SPW: calling de novo copy number variants in pedigrees

Motivation: Whole genome sequencing is becoming a diagnostics of choice for the identification of rare inherited and de novo copy number variants in families with various pediatric and late-onset genetic diseases. However, joint variant calling in pedigrees is hampered by the complexity of consensus breakpoint alignment across samples within an arbitrary pedigree structure. Results: We have dev...

متن کامل

I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies

The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...

متن کامل

BIRC5 Genomic Copy Number Variation in Early-Onset Breast Cancer

Background: Baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) gene is an inhibitor of apoptosis that expresses in human embryonic tissues but it is absent in most healthy adult tissues. The copy number of BIRC5 has been indicated to be highly increased in tumor tissues; however, its association with the age of onset in breast cancer is not well understood. Methods: Forty tumor tiss...

متن کامل

Performance evaluation of block-based copy- move image forgery detection algorithms

Copy-move forgery is a particular type of distortion where a part or portions of one image is/are copied to other parts of the same image. This type of manipulation is done to hide a particular part of the image or to copy one or more objects into the same image. There are several methods for detecting copy-move forgery, including block-based and key point-based methods. In this paper, a method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 32 15  شماره 

صفحات  -

تاریخ انتشار 2016